- \( a_n = \left(\frac{3}{4}\right)^n \sin(n) \)
- \( b_n = \frac{n - \sin n}{n + \sin n} \)
- \( c_n = n + 1 - \sin(2n) \)
- \( d_n = 2(-1)^n + 4n^2 + 3 \)
- \( u_n = \frac{3n}{5 + \cos n} \)
- \( v_n = \frac{n - \cos n}{n^2 + 2n} \)
- \( w_n = \sqrt[n]{2^n} - \sqrt[n]{2^n} \)
- \( x_n = \frac{2^{n+1} + 3^{n+1}}{3^{2n-1}} \)
- \( y_n = \frac{3n + E(n)}{n + 5} \)
- \( z_n = \frac{1}{n(3 - \sin n)} \)
Calculer la limite de chacune des suites suivantes :
⏳ Solution Non Disponible
La solution pour cet exercice n'est pas encore disponible. Revenez bientôt !