- $ z_1=1+e^{ia}$
- $z_2=1-e^{ia}$
- $z_3=e^{ia}+e^{ib}$
- $z_4=\dfrac{1+e^{ia}}{1+e^{ib}}$
- Montrer que: $$\dfrac{1-\cos(a)-i\sin(a)}{1+\cos(a)+i\sin(a)}~=~-i\tan\left(\dfrac{a}{2}\right)$$
Soient $~a,b\in~]0~;~\pi[$.
Ecrire sous forme exponentielle les nombres complexes suivants :
⏳ Solution Non Disponible
La solution pour cet exercice n'est pas encore disponible. Revenez bientôt !